Тепловые нагрузки отопительной системы: характеристики, определения
Garant-vl.ru

Строительный портал

Тепловые нагрузки отопительной системы: характеристики, определения

Как рассчитывается тепловая нагрузка на систему отопления здания

Предположим, вам захотелось самостоятельно подобрать котел, радиаторы и трубы отопительной системы частного дома. Задача №1 – сделать расчет тепловой нагрузки на отопление, проще говоря, определить общий расход теплоты, необходимой для прогрева здания до комфортной температуры внутри помещений. Предлагаем изучить 3 расчетных методики – разные по сложности и точности результатов.

Способы определения нагрузки

Сначала поясним значение термина. Тепловая нагрузка – это общее количество теплоты, расходуемое системой отопления на обогрев помещений до нормативной температуры в наиболее холодный период. Величина исчисляется единицами энергии – киловаттами, килокалориями (реже – килоджоулями) и обозначается в формулах латинской буквой Q.

Зная нагрузку на отопление частного дома в целом и потребность каждого помещения в частности, нетрудно подобрать котел, обогреватели и батареи водяной системы по мощности. Как можно рассчитать данный параметр:

  1. Если высота потолков не достигает 3 м, производится укрупненный расчет по площади отапливаемых комнат.
  2. При высоте перекрытий 3 м и более расход тепла считается по объему помещений.
  3. Определение теплопотерь через внешние ограждения и затрат на подогрев вентиляционного воздуха согласно СНиП.

Примечание. В последние годы широкую популярность обрели онлайн-калькуляторы, размещаемые на страницах различных интернет-ресурсов. С их помощью определение количества тепловой энергии выполняется быстро и не требует дополнительных инструкций. Минус – достоверность результатов нужно проверять, ведь программы пишут люди, не являющиеся теплотехниками.

Две первые расчетные методики основаны на применении удельной тепловой характеристики по отношению к обогреваемой площади либо объему здания. Алгоритм простой, используется повсеместно, но дает весьма приближенные результаты и не учитывает степень утепления коттеджа.

Считать расход тепловой энергии по СНиП, как делают инженеры–проектировщики, гораздо сложнее. Придется собрать множество справочных данных и потрудиться над вычислениями, зато конечные цифры отразят реальную картину с точностью 95%. Мы постараемся упростить методику и сделать расчет нагрузки на отопление максимально доступным для понимания.

Для примера – проект одноэтажного дома 100 м²

Чтобы доходчиво пояснить все способы определения количества тепловой энергии, предлагаем взять в качестве примера одноэтажный дом общей площадью 100 квадратов (по наружному обмеру), показанный на чертеже. Перечислим технические характеристики здания:

  • регион постройки – полоса умеренного климата (Минск, Москва);
  • толщина внешних ограждений – 38 см, материал – силикатный кирпич;
  • наружное утепление стен – пенопласт толщиной 100 мм, плотность – 25 кг/м³;
  • полы – бетонные на грунте, подвал отсутствует;
  • перекрытие – ж/б плиты, утепленные со стороны холодного чердака пенопластом 10 см;
  • окна – стандартные металлопластиковые на 2 стекла, размер – 1500 х 1570 мм (h);
  • входная дверь – металлическая 100 х 200 см, изнутри утеплена экструдированным пенополистиролом 20 мм.

В коттедже устроены межкомнатные перегородки в полкирпича (12 см), котельная располагается в отдельно стоящей постройке. Площади комнат обозначены на чертеже, высоту потолков будем принимать в зависимости от поясняемой расчетной методики – 2.8 либо 3 м.

Считаем расход теплоты по квадратуре

Для приблизительной прикидки отопительной нагрузки обычно используется простейший тепловой расчет: берется площадь здания по наружному обмеру и умножается на 100 Вт. Соответственно, потребление тепла дачным домиком 100 м² составит 10000 Вт или 10 кВт. Результат позволяет подобрать котел с коэффициентом запаса 1.2—1.3, в данном случае мощность агрегата принимается равной 12.5 кВт.

Мы предлагаем выполнить более точные вычисления, учитывающие расположение комнат, количество окон и регион застройки. Итак, при высоте потолков до 3 м рекомендуется использовать следующую формулу:

Расчет ведется для каждого помещения отдельно, затем результаты суммируются и умножаются на региональный коэффициент. Расшифровка обозначений формулы:

  • Q – искомая величина нагрузки, Вт;
  • Sпом – квадратура комнаты, м²;
  • q – показатель удельной тепловой характеристики, отнесенный к площади помещения, Вт/м²;
  • k – коэффициент, учитывающий климат в районе проживания.

Для справки. Если частный дом расположен в полосе умеренного климата, коэффициент k принимается равным единице. В южных регионах k = 0.7, в северных применяются значения 1.5—2.

В приближенном подсчете по общей квадратуре показатель q = 100 Вт/м². Подобный подход не учитывает расположение комнат и разное количество световых проемов. Коридор, находящийся внутри коттеджа, потеряет гораздо меньше тепла, чем угловая спальня с окнами той же площади. Мы предлагаем принимать величину удельной тепловой характеристики q следующим образом:

  • для помещений с одной наружной стеной и окном (или дверью) q = 100 Вт/м²;
  • угловые комнаты с одним световым проемом – 120 Вт/м²;
  • то же, с двумя окнами – 130 Вт/м².

Как правильно подбирать значение q, наглядно показано на плане здания. Для нашего примера расчет выглядит так:

Q = (15.75 х 130 + 21 х 120 + 5 х 100 + 7 х 100 + 6 х 100 + 15.75 х 130 + 21 х 120) х 1 = 10935 Вт ≈ 11 кВт.

Как видите, уточненные вычисления дали другой результат – по факту на отопление конкретного домика 100 м² израсходуется на 1 кВт тепловой энергии больше. Цифра учитывает расход теплоты на подогрев наружного воздуха, проникающего в жилище сквозь проемы и стены (инфильтрацию).

Вычисление тепловой нагрузки по объему комнат

Когда расстояние между полами и потолком достигает 3 м и более, предыдущий вариант расчета использовать нельзя – результат выйдет некорректным. В подобных случаях отопительную нагрузку принято считать по удельным укрупненным показателям расхода теплоты на 1 м³ объема помещения.

Формула и алгоритм вычислений остаются прежними, только параметр площади S меняется на объем – V:

Соответственно, принимается другой показатель удельного расхода q, отнесенный к кубатуре каждого помещения:

  • комната внутри здания либо с одной внешней стеной и окном – 35 Вт/м³;
  • помещение угловое с одним окном – 40 Вт/м³;
  • то же, с двумя световыми проемами – 45 Вт/м³.

Примечание. Повышающие и понижающие региональные коэффициенты k применяются в формуле без изменений.

Теперь для примера определим нагрузку на отопление нашего коттеджа, взяв высоту потолков равной 3 м:

Q = (47.25 х 45 + 63 х 40 + 15 х 35 + 21 х 35 + 18 х 35 + 47.25 х 45 + 63 х 40) х 1 = 11182 Вт ≈ 11.2 кВт.

Заметно, что требуемая тепловая мощность системы отопления выросла на 200 Вт по сравнению с предыдущим расчетом. Если же принять высоту комнат 2.7—2.8 м и сосчитать затраты энергии через кубатуру, то цифры получатся примерно одинаковые. То есть, способ вполне применим для укрупненного подсчета теплопотерь в помещениях любой высоты.

Расчетный алгоритм согласно СНиП

Данный способ – наиболее точный из всех существующих. Если вы воспользуетесь нашей инструкцией и правильно выполните расчет, можете быть уверены в результате на 100% и спокойно подбирать отопительное оборудование. Порядок действий выглядит так:

  1. Измерьте квадратуру внешних стен, полов и перекрытий отдельно в каждой комнате. Определите площадь окон и входных дверей.
  2. Рассчитайте тепловые потери через все наружные ограждения.
  3. Узнайте расход тепловой энергии, идущей на подогрев вентиляционного (инфильтрационного) воздуха.
  4. Суммируйте результаты и получайте реальный показатель тепловой нагрузки.

Обмер жилых комнат изнутри

Важный момент. В двухэтажном коттедже внутренние перекрытия не учитываются, поскольку не граничат с окружающей средой.

Суть расчета тепловых потерь относительно проста: нужно выяснить, сколько энергии теряет каждый тип строительной конструкции, ведь окна, стенки и полы сделаны из разных материалов. Определяя квадратуру наружных стен, вычитайте площадь остекленных проемов — последние пропускают больший тепловой поток и потому считаются отдельно.

При замере ширины комнат прибавляйте к ней половину толщины внутренней перегородки и захватывайте наружный угол, как показано на схеме. Цель – учесть полную квадратуру внешнего ограждения, теряющего тепло по всей поверхности.

При замерах нужно захватывать угол постройки и половину внутренней перегородки

Определяем теплопотери стен и крыши

Формула расчета теплового потока, проходящего через конструкцию одного типа (например, стену), выглядит следующим образом:

  • величину теплопотерь через одно ограждение мы обозначили Qi, Вт;
  • А – квадратура стенки в пределах одного помещения, м²;
  • tв – комфортная температура внутри комнаты, обычно принимается +22 °С;
  • tн – минимальная температура уличного воздуха, которая держится в течение 5 самых холодных зимних дней (принимайте реальное значение для вашей местности);
  • R – сопротивление толщи наружного ограждения передаче тепла, м²°С/Вт.

Коэффициенты теплопроводности для некоторых распространенных стройматериалов

В приведенном списке остается один неопределенный параметр – R. Его значение зависит от материала стеновой конструкции и толщины ограждения. Чтобы рассчитать сопротивление теплопередаче, действуйте в таком порядке:

  1. Определите толщину несущей части внешней стены и отдельно — слоя утеплителя. Буквенное обозначение в формулах – δ, считается в метрах.
  2. Узнайте из справочных таблиц коэффициенты теплопроводности конструктивных материалов λ, единицы измерения — Вт/(мºС).
  3. Поочередно подставьте найденные величины в формулу:
  4. Определите R для каждого слоя стены по отдельности, результаты сложите, после чего используйте в первой формуле.

Вычисления повторите отдельно для окон, стен и перекрытия в пределах одной комнаты, затем переходите в следующее помещение. Потери теплоты через полы считаются отдельно, о чем рассказано ниже.

Совет. Правильные коэффициенты теплопроводности различных материалов указаны в нормативной документации. Для России это Свод Правил СП 50.13330.2012, для Украины — ДБН В.2.6–31

2006. Внимание! В расчетах используйте значение λ, прописанные в столбце «Б» для условий эксплуатации.

Пример расчета для гостиной нашего одноэтажного дома (высота потолков 3 м):

  1. Площадь наружных стен вместе с окнами: (5.04 + 4.04) х 3 = 27.24 м². Квадратура окон – 1.5 х 1.57 х 2 = 4.71 м². Чистая площадь ограждения: 27.24 – 4.71 = 22.53 м².
  2. Теплопроводность λ для кладки силикатного кирпича равна 0.87 Вт/(мºС), пенопласта 25 кг/м³ – 0.044 Вт/(мºС). Толщина – соответственно 0.38 и 0.1 м, считаем сопротивление теплопередаче: R = 0.38 / 0.87 + 0.1 / 0.044 = 2.71 м²°С/Вт.
  3. Температура наружная – минус 25 °С, внутри гостиной – плюс 22 °С. Разность составит 25 + 22 = 47 °С.
  4. Определяем теплопотери сквозь стенки гостиной: Q = 1 / 2.71 х 47 х 22.53 = 391 Вт.

Стена коттеджа в разрезе

Аналогичным образом считается тепловой поток через окна и перекрытие. Термическое сопротивление светопрозрачных конструкций обычно указывает производитель, характеристики ж/б перекрытия толщиной 22 см находим в нормативной либо справочной литературе:

  1. R утепленного перекрытия = 0.22 / 2.04 + 0.1 / 0.044 = 2.38 м²°С/Вт, теплопотери сквозь кровлю – 1 / 2.38 х 47 х 5.04 х 4.04 = 402 Вт.
  2. Потери сквозь оконные проемы: Q = 0.32 x 47 x71 = 70.8 Вт.

Таблица коэффициентов теплопроводности металлопластиковых окон. Мы взяли самый скромный однокамерный стеклопакет (k = 0.32 Вт/(м•°С)

Итого теплопотери в гостиной (исключая полы) составят 391 + 402 + 70.8 = 863.8 Вт. Аналогичные подсчеты ведутся по остальным комнатам, результаты суммируются.

Обратите внимание: коридор внутри здания не соприкасается с наружной оболочкой и теряет тепло только через крышу и полы. Какие ограждения нужно учитывать в расчетной методике, смотрите на видео.

Способы расчета тепловой нагрузки на отопление

При проектировании систем обогрева всех типов строений нужно провести правильные вычисления, а затем разработать грамотную схему отопительного контура. На этом этапе особое внимание следует уделить расчету тепловой нагрузки на отопление. Для решения поставленной задачи важно использовать комплексный подход и учесть все факторы, влияющие на работу системы.

Читать еще:  Как сделать каркасный бассейн своими руками: инструкции, советы, рекомендации

С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

  • Характеристики каждого элемента конструкции строения. Система вентиляции существенно влияет на потери теплоэнергии.
  • Размеры здания. Необходимо учитывать как объем всех помещений, так и площадь окон конструкций и наружных стен.
  • Климатическая зона. Показатель максимальной часовой нагрузки зависит от температурных колебаний окружающего воздуха.

Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.

Перед началом проведения расчета нагрузки на отопление по укрупненным показателям нужно определиться с рекомендуемыми температурными режимами для жилого строения. Для этого придется обратиться к нормам СанПиН 2.1.2.2645−10. Исходя из данных, указанных в этом нормативном документе, необходимо обеспечить оптимальные температурные режимы работы системы обогрева для каждого помещения.

Используемые сегодня способы выполнения расчетов часовой нагрузки на отопительную систему позволяют получать результаты различной степени точности. В некоторых ситуациях требуется провести сложные вычисления, чтобы минимизировать погрешность.

Если же при проектировании системы отопления оптимизация расходов на энергоноситель не является приоритетной задачей, допускается использование менее точных методик.

Любая методика расчета тепловой нагрузки позволяет подобрать оптимальные параметры системы обогрева. Также этот показатель помогает определиться с необходимостью проведения работ по улучшению теплоизоляции строения. Сегодня применяются две довольно простые методики расчета тепловой нагрузки.

Если в строении все помещения имеют стандартные размеры и обладают хорошей теплоизоляцией, можно воспользоваться методом расчета необходимой мощности отопительного оборудования в зависимости от площади. В этом случае на каждые 10 м 2 помещения должен производиться 1 кВт тепловой энергии. Затем полученный результат необходимо умножить на поправочный коэффициент климатической зоны.

Это самый простой способ расчета, но он имеет один серьезный недостаток — погрешность очень высока. Во время проведения вычислений учитывается лишь климатический регион. Однако на эффективность работы системы обогрева влияет много факторов. Таким образом, использовать эту методику на практике не рекомендуется.

Применяя методику расчета тепла по укрупненным показателям, погрешность вычислений окажется меньшей. Этот способ сначала часто применялся для определения теплонагрузки в ситуации, когда точные параметры строения были неизвестны. Для определения параметра применяется расчетная формула:

Qот = q0*a*Vн*(tвн — tнро),

где q0 — удельная тепловая характеристика строения;

a — поправочный коэффициент;

Vн — наружный объем строения;

tвн, tнро — значения температуры внутри дома и на улице.

В качестве примера расчета тепловых нагрузок по укрупненным показателям можно выполнить вычисления максимального показателя для отопительной системы здания по наружным стенам 490 м 2 . Строение двухэтажное с общей площадью в 170 м 2 расположено в Санкт-Петербурге.

Сначала необходимо с помощью нормативного документа установить все нужные для расчета вводные данные:

  • Тепловая характеристика здания — 0,49 Вт/м³*С.
  • Уточняющий коэффициент — 1.
  • Оптимальный температурный показатель внутри здания — 22 градуса.

Предположив, что минимальная температура в зимний период составит -15 градусов, можно все известные величины подставить в формулу — Q =0.49*1*490 (22+15)= 8,883 кВт. Используя самую простую методику расчета базового показателя тепловой нагрузки, результат оказался бы более высоким — Q =17*1=17 кВт/час. При этом укрупненный метод расчета показателя нагрузки учитывает значительно больше факторов:

  • Оптимальные температурные параметры в помещениях.
  • Общую площадь строения.
  • Температуру воздуха на улице.

Также эта методика позволяет с минимальной погрешностью рассчитать мощность каждого радиатора, установленного в отдельно взятом помещении. Единственным ее недостатком является отсутствие возможности рассчитать теплопотери здания.

Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания — пол, стены, а также потолок.

Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой — R=d/λ.

Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем — по вентиляции. В качестве примера можно взять следующие характеристики строения:

  • Площадь и толщина стен — 290 м² и 0,4 м.
  • В строении находятся окна (двойной стеклопакет с аргоном) — 45 м² (R =0,76 м²*С/Вт).
  • Стены изготовлены из полнотелого кирпича — λ=0,56.
  • Здание было утеплено пенополистиролом — d =110 мм, λ=0,036.

Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен — R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя — R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель — R общ =0,71+3,05= 3,76 м²*С/Вт.

Фактические теплопотери стен составят — (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой — 125,15*(22+15)= 4,63 кВт/час.

На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу — 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы — (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, — 4,63+1,27=5,9 кВт/час.

Результат будет максимально точным, если учитывать потери через пол и крышу. Сложные вычисления здесь проводить необязательно, допускается использование уточняющего коэффициента. Процесс расчетов теплонагрузки на систему обогрева отличается высокой сложностью. Однако его можно упростить с помощью программы VALTEC.

Что такое тепловая нагрузка на отопление здания

Для обогрева помещения требуются отопительные приборы соответствующей мощности. Расчет тепловой нагрузки на отопление здания позволяет точно установить, какой мощности котел потребуется, какой величины радиаторы нужно ставить и какая схема отопления будет наиболее эффективной. При вычислениях учитывают много факторов.

Понятия тепловой нагрузки

Обогрев помещения – это компенсация теплопотерь. Сквозь стены, фундамент, окна и двери тепло постепенно выводится наружу. Чем ниже температура на улице, тем быстрее происходит передача тепла наружу. Чтобы поддерживать внутри здания комфортную температуру, устанавливают обогреватели. Их производительность должна быть достаточно высокой, чтобы перекрыть теплопотери.

Тепловую нагрузку определяют как сумму теплопотерь здания, равную необходимой мощности отопления. Рассчитав сколько и как дом теряет тепла, узнают мощность отопительной системы. Суммарной величины недостаточно. Комната с 1 окном теряет меньше тепла, чем помещение с 2 окнами и балконом, поэтому показатель рассчитывают для каждой комнаты отдельно.

При вычислениях обязательно учитывают высоту потолка. Если она не превышает 3 м, выполняют расчет по величине площади. Если высота от 3 до 4 м, расход считают по объему.

Факторы, влияющие на ТН

На потерю тепла влияет множество факторов:

  • Фундамент – утепленный вариант удерживает тепло в доме, неутепленный пропускает до 20%.
  • Стена – у пористого бетона или деревобетона пропускная способность намного ниже, чем у кирпичной стены. Красный глиняный кирпич лучше удерживает тепло, чем силикатный. Важна и толщина перегородки: у стены из кирпича толщиной в 65 см и пенобетона толщиной в 25 см одинаковый уровень теплопотерь.
  • Утепление – теплоизоляция существенно меняет картину. Внешнее утепление пенополиуретаном – лист толщиной в 25 мм – равно по эффективности второй кирпичной стене толщиной в 65 см. Отделка пробкой внутри – лист в 70 мм – заменяет 25 см пенобетона. Специалисты не зря утверждают, что эффективное отопление начинается с правильного утепления.
  • Крыша – скатная конструкция и утепленный чердак снижают потери. Плоская крыша из железобетонных плит пропускает до 15% тепла.
  • Площадь остекления – показатель теплопроводности у стекла очень велик. Какими бы герметичными ни были рамы, сквозь стекло тепло уходит. Чем больше окон и чем больше их площадь, тем выше тепловая нагрузка на здание.
  • Вентиляция – уровень теплопотерь зависит от производительности устройства и частоты использования. Система рекуперации позволяет несколько уменьшить потери.
  • Разница между температурой на улице и внутри дома – чем она больше, тем выше нагрузка.
  • Распределение тепла внутри здания – влияет на показатели для каждой комнаты. Помещения внутри здания остывают меньше: при расчетах комфортной температурой здесь считают величину в +20 С. Торцевые комнаты остывают быстрее – нормальной температурой здесь будет +22 С. На кухне достаточно нагревать воздух до +18 С, так как здесь много других источников тепла: плита, духовка, холодильник.

При расчетах тепловой нагрузки многоквартирного дома учитывают материал, толщину и утепление перегородок и перекрытий.

Характеристики объекта для расчета

Тепловая нагрузка на отопление и потеря тепла дома – не одно и то же. Техническое здание нет надобности отапливать так же интенсивно, как жилые помещения. Прежде чем приступать к расчетам, устанавливают следующее:

  • Назначение объекта – жилой дом, квартира, школа, спортивный зал, магазин. Требования по обогреву разные.
  • Особенности архитектуры – это размеры оконных и балконных проемов, устройство крыши, наличие чердаков и подвалов, этажность здания и прочее.
  • Нормы температурного режима – для жилых комнат и офиса они разные.
  • Назначение помещения – параметр важен для производственных сооружений, так как для каждого цеха или даже участка требуется разный температурный режим.
  • Конструкция внешних ограждений – наружных стен и крыши.
  • Уровень техобслуживания – наличие горячего водоснабжения уменьшает теплопотери, интенсивно работающая вентиляция повышает.
  • Число людей, постоянно пребывающих в доме – например, воздействует на показатели температуры и влажности.
  • Количество точек забора теплоносителя – чем их больше, тем значительнее теплопотери.
  • Другие особенности – например, наличие бассейна, сауны, оранжереи или число часов, когда в здании находятся люди.

При вычислении теплопотерь в магазине или в пункте общественного питания учитывают количество оборудования, выделяющего тепло – витрин, холодильников, кухонной техники.

Виды тепловых нагрузок

Тепловые нагрузки носят разный характер. Есть некоторый постоянный уровень теплопотерь, связанный с толщиной стены, конструкцией кровли. Есть временные – при резком снижении температуры, при интенсивной работе вентиляции. Расчет всей тепловой нагрузки учитывает и это.

Читать еще:  Мыльные пузыри с глицерином: рецепты и основные правила

Сезонные нагрузки

Так называют теплопотери, связанные с погодой. Сюда относят:

  • разницу между температурой наружного воздуха и внутри помещения;
  • скорость и направление ветра;
  • количество солнечного излучения – при высокой инсоляции здания и большом количестве солнечных дней даже зимой дом охлаждается меньше;
  • влажность воздуха.

Сезонную нагрузку отличает переменный годовой график и постоянный суточный. Сезонная тепловая нагрузка – это отопление, вентиляция и кондиционирование. К зимним относят 2 первых вида.

В формулах используют не кратковременные резкие изменения температуры и влажности – максимальные, а усредненные: значения, наблюдаемые за 5 самых холодных дней из 5 самых холодных зим за 50 лет.

Постоянные тепловые

К круглогодичным относят горячее водоснабжение и технологические аппараты. Последние имеет значение для промышленных предприятий: варочные котлы, промышленные холодильники, пропарочные камеры выделяют гигантское количество тепла.

В жилых зданиях нагрузка на горячее водоснабжение становится сравнима с отопительной нагрузкой. Величина эта мало изменяется в течение года, но сильно колеблется в зависимости от времени суток и дня недели. Летом расход ГСВ уменьшается на 30%, так как температура воды в холодном водопроводе выше на 12 градусов, чем зимой. В холодное время года потребление горячей воды растет, особенно в выходные дни.

Сухое тепло

Комфортный режим определяется температурой воздуха и влажностью. Эти параметры рассчитывают, руководствуясь понятиями сухого и скрытого тепла. Сухое – это величина, измеряемая специальным сухим термометром. На нее воздействует:

  • остекление и дверные проемы;
  • солнце и тепловые нагрузки на зимнее отопление;
  • перегородки между комнатами с разной температурой, полы над пустым пространством, потолки под чердаками;
  • трещины, щели, зазоры в стенах и дверях;
  • воздуховоды вне отапливаемых зон и вентиляция;
  • оборудование;
  • люди.

Полы на бетонном фундаменте, подземные стены при расчетах не учитываются.

Скрытое тепло

Этот параметр определяет влажность воздуха. Источником выступает:

  • оборудование – нагревает воздух, снижает влажность;
  • люди – источник влажности;
  • потоки воздуха, проводящие сквозь трещины и щели в стенах.

Обычно вентиляция не влияет на сухость помещения, однако есть исключения.

Методики расчета тепловой нагрузки на отопление здания

Чтобы рассчитать необходимую тепловую нагрузку, данные о нормах температуры и влажности берут из ГОСТ и СНиП. Там же есть сведения о коэффициентах теплопередачи разных материалов и конструкций. При расчетах обязательно учитывают паспортные данные радиаторов, отопительного котла, другого оборудования.

В вычисления включают:

  • поток тепловой энергии радиатора – максимальное значение;
  • максимальный расход за 1 час при работе отопительной системы;
  • тепловые затраты за сезон.

Приблизительное значение дает соотношение расчетных данных с площадью дома или комнат. Однако такой подход не учитывает конструкционные особенности здания.

Вычисление теплопотерь с использованием укрупненных показателей

Метод применяют, когда точные характеристики здания невозможно установить. Чтобы рассчитать тепловую нагрузку, используют формулу.

  • – удельный тепловой показатель строения по проекту или стандартной таблице. Для зданий разного назначения – жилой многоквартирный дом, гараж, лаборатория – он разный.
  • а – поправочный коэффициент, разный для разных климатических зон.
  • – внешний объем строения, м³.
  • Tвн и Tнро – температура внутри дома и снаружи.

Метод позволяет рассчитать показатели для всей постройки и для каждой зоны или комнаты. Однако формула не включает данные о теплопроводности материалов, из которых построен дом, а показатели для дерева, пенобетона и камня сильно отличаются.

Определение теплоотдачи отопительно-вентиляционного оборудования

Чтобы получить более достоверный результат, используют расчет по стенам и окнам и дополнительно вычисляют тепловую нагрузку вентиляции. Расчеты производят в несколько этапов:

  • рассчитывают площадь стен и остекления;
  • вычисляют сопротивление теплопередачи, используя данные справочника;
  • рассчитывают коэффициент по типу утеплителя – данные тоже есть в строительном справочнике, можно уточнить в паспорте изделий;
  • вычисляют уровень теплопотерь через окна;
  • расчетные величины умножают на сумму температур (внутри и снаружи здания) и получают суммарный расход тепла.

Расчет тепловой вентиляционной нагрузки выполняют по формуле Qv=c*m*(Tv-Tn), где:

  • Qv – расход тепла вентиляцией;
  • с – теплоемкость воздуха;
  • m – масса воздуха: в среднем для нормальной вентиляции необходим объем воздуха, равный утроенной квадратуре комнаты; массу получают, умножив величину на плотность воздуха;
  • Tv-Tn – разница между внешней и внутренней температурой.

Общий показатель получают, просуммировав расчетные теплопотери здания и потери через вентиляцию.

Вычисление значений с учетом различных элементов ограждающих конструкций

Если для расчетов использовать теоретические данные – показатели по теплопотерям каждого материала – результат все равно оказывается не совсем точным. В вычислениях невозможно учесть количество и величину трещин и зазоров, работу освещения и прочее.

Самый точный результат обеспечивает тепловизионное обследование здания. Выполняется процедура в темное время суток, при выключенном освещении. Рекомендуют убрать на время ковры и мебель, чтобы не искажать показания.

Обследование выполняют в 3 этапа:

  • с помощью тепловизора изучают помещение изнутри, тщательно обследуют углы и стыки;
  • измеряют потери снаружи – так учитываются все особенности материалов и архитектуры;
  • данные прибора переносят в компьютер, рассчитывают результат.

По итогам обследования составляют рекомендации: по утеплению, реконструкции, выбору отопительных приборов.

Современные котлы оборудуются регуляторами мощности. Это устройства, которые поддерживают производительность на установленном уровне, но предупреждают скачки и провалы во время работы. На использование энергоресурсов существуют лимиты: при превышении установленного значения плата за газ или электричество увеличивается. РТН ограничивает расход энергии топлива.

Расчет тепловой нагрузки на отопление здания

В холодное время года у нас в стране отопление зданий и сооружений составляют одну из основных статей расходов любого предприятия. И тут не важно жилое это помещение, производственное или складское. Везде нужно поддерживать постоянную плюсовую температуру, чтобы не замерзли люди, не вышло из строя оборудование или не испортилась продукция или материалы. В ряде случаев требуется провести расчет тепловой нагрузки на отопление того или иного зданий или всего предприятия в целом.

В каких случаях производят расчет тепловой нагрузки

  • для оптимизации расходов на отопление;
  • для сокращения расчетной тепловой нагрузки;
  • в том случае если изменился состав теплопотребляющего оборудования (отопительные приборы, системы вентиляции и т.п.);
  • для подтверждения расчетного лимита по потребляемой теплоэнергии;
  • в случае проектирования собственной системы отопления или пункта теплоснабжения;
  • если есть субабоненты, потребляющие тепловую энергию, для правильного ее распределения;
  • В случае подключения к отопительной системе новых зданий, сооружений, производственных комплексов;
  • для пересмотра или заключения нового договора с организацией, поставляющей тепловую энергию;
  • если организация получила уведомление, в котором требуется уточнить тепловые нагрузки в нежилых помещениях;
  • если организация нее имеет возможности установить приборы учета теплоэнергии;
  • в случае увеличения потребления теплоэнергии по непонятным причинам.

На каком основании может производиться перерасчет тепловой нагрузки на отопление здания

Приказ Министерства Регионального Развития № 610 от 28.12.2009 «Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок» (Скачать) закрепляет право потребителей теплоэнергии производить расчет и перерасчет тепловых нагрузок. Так же такой пункт обычно присутствует в каждом договоре с теплоснабжающей организацией. Если такого пункта нет, обсудите с вашими юристами вопрос его внесения в договор.

Но для пересмотра договорных величин потребляемой тепловой энергии должен быть предоставлен технический отчет с расчетом новых тепловых нагрузок на отопление здания, в котором должны быть приведены обоснования снижения потребления тепла. Кроме того, перерасчет тепловых нагрузок производиться после таких мероприятий как:

  • капитальный ремонт здания;
  • реконструкция внутренних инженерных сетей;
  • повышение тепловой защиты объекта;
  • другие энергосберегающие мероприятия.

Методика расчета

Для проведения расчета или перерасчета тепловой нагрузки на отопление зданий, уже эксплуатируемых или вновь подключаемых к системе отопления проводят следующие работы:

  1. Сбор исходных данные об объекте.
  2. Проведение энергетического обследования здания.
  3. На основании полученной после обследования информации производится расчет тепловой нагрузки на отопление, ГВС и вентиляцию.
  4. Составление технического отчета.
  5. Согласование отчета в организации, предоставляющей теплоэнергию.
  6. Заключение нового договора или изменение условий старого.

Сбор исходный данных об объекте тепловой нагрузки

Какие данные необходимо собрать или получить:

  1. Договор (его копия) на теплоснабжение со всеми приложениями.
  2. Справка оформленная на фирменном бланке о фактической численности сотрудников (в случае производственного зданий) или жителей (в случае жилого дома).
  3. План БТИ (копия).
  4. Данные по системе отопления: однотрубная или двухтрубная.
  5. Верхний или нижний розлив теплоносителя.

Все эти данные обязательны, т.к. на их основе будет производиться расчет тепловой нагрузки, так же вся информация попадет в итоговый отчет. Исходные данные, кроме того, помогут определиться со сроками и объемами работа. Стоимость же расчета всегда индивидуальна и может зависеть от таких факторов как:

  • площадь отапливаемых помещений;
  • тип системы отопления;
  • наличия горячего водоснабжения и вентиляции.

Энергетическое обследование здания

Энергоаудит подразумевает выезд специалистов непосредственно на объект. Это необходимо для того, чтобы провести полный осмотр системы отопления, проверить качество ее изоляции. Так же во время выезда собираются недостающие данные об объекте, которые невозможно получить кроме как по средствам визуального осмотра. Определяются типы используемых радиаторов отопления, их месторасположение и количество. Рисуется схема и прикладываются фотографии. Обязательно осматриваются подводящие трубы, измеряется их диаметр, определяется материал, из которого они изготовлены, как эти трубы подведены, где расположены стояки и т.п.

В результат такого энергетического обследования (энергоаудита) заказчик получит на руки подробный технический отчет и на основании этого отчета уже и будет проихводиться расчет тепловых нагрузок на отопление здания.

Технический отчет

Технический отчет по расчету тепловой нагрузки должен состоять из следующих разделов:

  1. Исходные данные об объекте.
  2. Схема расположения радиаторов отопления.
  3. Точки вывода ГВС.
  4. Сам расчет.
  5. Заключение по результатам энергоаудита, которое должно включать сравнительную таблицу максимальных текущих тепловых нагрузок и договорных.
  6. Приложения.
    1. Свидетельство членства в СРО энергоаудитора.
    2. Поэтажный план здания.
    3. Экспликация.
    4. Все приложения к договору по энергоснабжению.

После составления, технический отчет обязательно должен быть согласован с теплоснабжающей организацией, после чего вносятся изменения в текущий договор или заключается новый.

Пример расчета тепловых нагрузок объекта коммерческого назначения

Это помещение на первом этаже 4-х этажного здания. Месторасположение — г. Москва.

Исходные данные по объекту

Адрес объекта г. Москва
Этажность здания 4 этажа
Этаж на котором расположены обследуемые помещения первый
Площадь обследуемых помещений 112,9 кв.м.
Высота этажа 3,0 м
Система отопления Однотрубная
Температурный график 95-70 град. С
Расчетный температурный график для этажа на котором находится помещение 75-70 град. С
Тип розлива Верхний
Расчетная температура внутреннего воздуха + 20 град С
Отопительные радиаторы, тип, количество Радиаторы чугунные М-140-АО – 6 шт.
Радиатор биметаллический Global (Глобал) – 1 шт.
Диаметр труб системы отопления Ду-25 мм
Длина подающего трубопровода системы отопления L = 28,0 м.
ГВС отсутствует
Вентиляция отсутствует
Тепловая нагрузка по договору (час/год) 0,02/47,67 Гкал
Читать еще:  Как очистить грибы зеленушки и подготовить их к дальнейшему употреблению

Расчетная теплопередача установленных радиаторов отопления, с учетом всех потерь, составила 0,007457 Гкал/час.

Максимальный расход теплоэнергии на отопление помещения составил 0,001501 Гкал/час.

Итоговый максимальный расход — 0,008958 Гкал/час или 23 Гкал/год.

В итоге рассчитываем годовую экономию на отопление данного помещения: 47,67-23=24,67 Гкал/год. Таким образом можно сократить расходы на теплоэнергию почти вдвое. А если учесть, что текущая средняя стоимость Гкал в Москве составляет 1,7 тыс. рублей, то годовая экономию в денежном эквиваленте составит 42 тыс. рублей.

Формула расчета в Гкал

Расчет тепловой нагрузки на отопление здания в случае отсутствия счетчиков учета тепловой энергии производится по формуле Q = V * (Т1 — Т2) / 1000, где:

  • V – объем волы, которую потребляет система отопления, измеряется тоннами или куб.м.,
  • Т1 – температура горячей воды. Измеряется в С (градусы по Цельсию) и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если точно определить температуру нельзя то используют усредненные показатели 60-65 С.
  • Т2 – температура холодной воды. Зачастую ее измерить практически невозможно и в таком случае используют постоянные показатели, которые зависят от региона. К примеру, в одном из регионов, в холодное время года показатель будет равен 5, в теплое – 15.
  • 1 000 – коэффициент для получения результата расчета в Гкал.

Для системы отопления с закрытым контуром тепловая нагрузка (Гкал/час) рассчитывается другим способом: Qот = α * qо * V * (tв — tн.р) * (1 + Kн.р) * 0,000001, где:

  • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 С;
  • V – объем строения по наружным замерам;
  • – удельный отопительный показатель строения при заданной tн.р = -30 С, измеряется в Ккал/куб.м.*С;
  • – расчетная внутренняя температура в здании;
  • tн.р – расчетная уличная температура для составления проекта системы отопления;
  • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

Расчет по радиаторам отопления на площадь

Укрупненный расчет

Если на 1 кв.м. площади требуется 100 Вт тепловой энергии, то помещение в 20 кв.м. должно получать 2 000 Вт. Типичный радиатор из восьми секций выделяет около 150 Вт тепла. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный расчет

Точный расчет выполняется по следующей формуле: Qт = 100 Вт/кв.м. × S(помещения)кв.м. × q1 × q2 × q3 × q4 × q5 × q6× q7, где:

  • q1 – тип остекления: обычное =1,27; двойное = 1,0; тройное = 0,85;
  • q2 – стеновая изоляция: слабая, или отсутствующая = 1,27; стена выложенная в 2 кирпича = 1.0, современна, высокая = 0,85;
  • q3 – соотношение суммарной площади оконных проемов к площади пола: 40% = 1,2; 30% = 1,1; 20% — 0,9; 10% = 0,8;
  • q4 – минимальная уличная температура: -35 С = 1,5; -25 С = 1,3; -20 С = 1,1; -15 С = 0,9; -10 С = 0,7;
  • q5 – число наружных стен в помещении: все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2;
  • q6 – тип расчетного помещения над расчетной комнатой: холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8;
  • q7 – высота потолков: 4,5 м = 1,2; 4,0 м = 1,15; 3,5 м = 1,1; 3,0 м = 1,05; 2,5 м = 1,3.

Расчет максимальной тепловой нагрузки

ООО «Энергоэффективность и энергоаудит»

ТЕХНИЧЕСКОЕ ЗАКЛЮЧЕНИЕ

Расчет максимальной тепловой нагрузки

Наименование объекта: Магазин продовольственных товаров

Содержание:

Расчет тепловой нагрузки • Согласование в МОЭК

Исходные данные. Расчет максимальной тепловой нагрузки

Настоящий расчет выполнен с целью определения фактической тепловой нагрузки на отопление и горячее водоснабжение нежилых помещений.

Заказчик Магазин продовольственных товаров
Адрес объекта г. Москва
Договор теплоснабжения есть
Этажность здания 17 этажей
Этаж, на котором расположены обследуемые помещения 1 этаж
Высота этажа 3,15 м.
Система отопления независимая
Тип розлива нижний
Температурный график 95/70 °С
Расчетный температурный график для этажей на которых находятся помещения 95/70 °С
ГВС Централизованное
Расчетная температура внутреннего воздуха 18 °С
Представленная техническая документация 1. Копия договора теплоснабжения
2. Копия плана помещения.
3. Копия экспликации помещений.
4. Справка о численности персонала.

1-ый этаж

№ помещения № отопительного прибора на плане Фото отопительного прибора Технические характеристики отопительного прибора
11 1 PURMO Plan Ventil Compact Длина 700 мм
1 2 PURMO Plan Ventil Compact Длина 700 мм
6 3 PURMO Plan Ventil Compact Длина 1200 мм
4 4 PURMO Plan Ventil Compact Длина 1300 мм
3 5 PURMO Plan Ventil Compact Длина 1300 мм

Схема расположения радиаторов отопления

Расчет максимальной тепловой нагрузки на отопление

Расчет панельных радиаторов

Технические характеристики панельных радиаторов PURMO Plan Ventil Compact FCV 22
Температура теплоносителя, не более, град. С 110
Избыточное рабочее давление, не более, МПа (г/кв. см) 1,0
Высота H, мм 300
Длина L, мм 700, 1200, 1300
Номинальная тепловая мощность при Тгр. 75/65/20°C, Вт 656, 1124, 1312

Температурный режим отопительной системы – 95/70/18.

Для определения фактической тепловой мощности системы, для каждого отопительного прибора, установленного в помещениях определённого функционального назначения учитывается поправочный коэффициент К, определяемый как:

Где: Тнапор.н – номинальный температурный напор принятый заводом изготовителем для определения теплоотдачи отопительного прибора при номинальных условиях;

Тнапор.ф – фактический температурный напор, ºС:

Где: tвх, tвых, – температура теплоносителя на входе и выходе из отопительного прибора, tвн.в – проектная температура внутреннего воздуха, ºС;

С учётом значения температуры теплоносителя на входе и выходе из отопительного прибора, рассчитывается значение температурного напора и коэффициента К:

Тепловая мощность панельного радиатора при индивидуальной температуре в системе отопления;

где: QS – номинальная тепловая мощность панельного радиатора;

Панельные радиаторы PURMO Plan Ventil Compac FCV 22:

Q = (QS · К) ·n= (656 · 1,29) ·2 = 1692,48 (Вт) · 0,863 = 1460,61 (Ккал/ч)

Q = (QS · К) ·n= (1124 · 1,29) ·1 = 1449,96 (Вт) · 0,863 = 1251,32 (Ккал/ч)

Q = (QS · К) ·n= (1312 · 1,29) ·2 = 3384,96 (Вт) · 0,863 = 2921,22 (Ккал/ч)

где: n – количество панельных радиаторов марки PURMO Plan Ventil Compact FCV 22, шт.

Суммарная тепловая нагрузка панельных радиаторов:

Qр.от.= 1460,61 + 1251,32 + 2921,22 = 5633,15 Ккал/ч

Максимальный часовой расход на отопление в трубопроводах

Кривые для определения теплопередачи 1м вертикальных гладких труб различных диаметров
трубы Ду 20 tтр. = + 82,5 о C tв = + 18 о C
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), стр. 56, рис. 12.2

Qпод.тр.Ду20 ´ l1 = 57,31 ´ 0,75 = 42,9825 ккал/ч (0,000043 Гкал/ч)

Qпод.тр.Ду20 = 57,31 ккал/ч – потери тепловой энергии в подающем трубопроводе на один погонный метр;

l1 = 0,75 м – длина подающего трубопровода;

Максимальный часовой расход на отопление

Qo max = Qр.от. + Qтр.= 5633,15 + 42,98 = 5676,13 ккал/ч (0,00567613 Гкал/ч).

Годовой расход за отопительный период

Qo год = Qo max´ ((ti – tm)/(ti – tо))´ 24´ Zo´ 10 -6 = 5676,13 ´ [(18 +3,1)/(18 +28)] ´ 24 ´ 214 ´ 10 -6= = 13,3722 Гкал/год, где:

tm = -3,1 °С – средняя температура наружного воздуха за расчетный период;

ti = 18 °С – расчетная температура внутреннего воздуха в помещениях;

tо = -28 °С – расчетная температура наружного воздуха;

24 час. – продолжительность работы системы отопления в сутки;

Zo = 214 сут. – продолжительность работы системы отопления за расчетный период.

Расчет тепловой нагрузки на горячее водоснабжение

Вероятность действия санитарно-технических приборов.

P = (q h hr,u x U) / (q h x N x 3600) = (1,7 x 4) / (0,2 х 2 х 3600) = 0,00472,

U = 4 человека – количество персонала;

q h = 0,2 л/с;

N = 2 – число санитарно-технических приборов с горячей водой.

Вероятность использования санитарно-технических приборов.

Phr = (3600 х P х q h ) / q h 0,hr = (3600 х 0,00472x 0,2) / 200 = 0,016992,

где:q h 0,hr = 200;

Phr h u x U/ 1000 x T = 10,2 x 4/ 1000 x 24 = 0,0017 м 3 /час

где: q h u = 10,2 л/час

Максимальный часовой расход воды.

qhr = 0,005 х q h 0,hr х аhr = 0,005 х 200 х 0,207 = 0,207 м 3 /час

Тепловой поток.

а) в течении среднего часа

Q h T = 1,16 х q h T х (65 – t c ) + Q ht = 1,16 х 0,0017 х (65 – 5) + 0,017748= 0,136068 кВт x 859,8 = 116,9913 ккал /ч (0,0001169913 Гкал/ч)

б) в течении часа максимального потребления

Q h hr = 1,16 х q h hr х (65 – t c ) + Q ht = 1,16 х 0,207 х (65 – 5) + 2,16108= 16,56828 кВт x 859,8 = 14245,407 ккал /ч (0,014245407 Гкал/ч)

Qh год = gum h ´ m ´ с ´ r ´ [(65 – tс з )´ Zз]´ (1+ Kт.п) ´ 10 -6 = 10,2 ´ 4 ´ 1 ´ 1 ´ [(65 – 5) ´ 365] ´ (1+ 0,3) ´ 10 -6 = 1,16158 Гкал/год

где: gum h = 10,2 л/сутки

Техническое заключение • Расчет максимальной тепловой нагрузки

В результате выполненных расчетов тепловой нагрузки на отопление и горячее водоснабжение нежилого помещения получены такие результаты:

№ п.п. Тепловые нагрузки, Гкал/ч Годовое потребление, Гкал/год
Договорные Расчетные
Средние Макси-
мальные
Дого-
ворное
Расчетное
1 2 3 4 5 6 7
1 Отопление 0,057 0,00567613 135,857 13,3722
2 ГВС 0,0029 0,000117 0,014245 22,787 1,1616
3 Вентиляция
4 Производстве-
нные нужды
Итого: 0,0599 0,000117 0,01992113 158,644 14,5338

Расчет тепловой нагрузки • Согласование в МОЭК

Список нормативно-технической и специальной литературы

Расходы тепла подсчитаны согласно и с учетом требований следующих документов:

  1. Методических указаний по определению расходов топлива, электроэнергии и воды на выработку теплоты отопительными котельными коммунальных теплоэнергетических предприятий (ГУП Академия коммунального хозяйства им. К.Д. Памфилова, 2002 г.);
  2. СНиП 23-01-99* «Строительная климатология»;
  3. Расчет систем центрального отопления (Р.В. Щекин, В.А. Березовский, В.А. Потапов, 1975 г.);
  4. Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.);
  5. СП30.13330 СНиП 2.04.-85* «Внутренний водопровод и канализация зданий».
  6. «Технический регламент о безопасности зданий и сооружений».
  7. СНиП 23-02-2003 «Тепловая защита зданий»
  8. СНиП 23-01-99* «Строительная климатология»
  9. СП 23-101-2004 «Проектирование тепловой защиты зданий»
  10. ГОСТ Р 54853-2011. Здания и сооружения. Метод определения сопротивления теплопередаче ограждающих конструкций с помощью тепломера
  11. ГОСТ 26602.1-99 «Блоки оконные и дверные. Методы определения сопротивления теплопередаче»
  12. ГОСТ 23166-99 «Блоки оконные. Общие технические условия»
  13. ГОСТ 30971-2002 «Швы монтажные узлов примыканий оконных блоков к стеновым проемам. Общие технические условия»
  14. Федеральный закон Российской Федерации от 23 ноября 2009 г. N 261-ФЗ “Об энергосбережении и о повышении энергетической эффективности, и о внесении изменений в отдельные законодательные акты Российской Федерации”.
  15. Приказ Минэнерго России от 30.06.2014 N 400 “Об утверждении требований к проведению энергетического обследования и его результатам и правил направления копий энергетического паспорта, составленного по результатам обязательного энергетического обследования”.
Ссылка на основную публикацию
Adblock
detector